Sign in
Ctrl K

BenchmarkRecovery

This project simulates Landsat data and evaluates the performance of recovery indicators with respect to data and disturbance characteristics.

1
mention
2
contributors

Cite this software

What BenchmarkRecovery can do for you

  • Generates synthetic, but realistic time series simulating forest recovery after a fire
  • Tests several resilience indicators over the time series

The context of this project is the study of the recovery of tropical forests after an abrupt disturbance (typically a forest fire) using satellite images as a data source.

The speed of recovery after a disturbance is known to be correlated with the concept of resilience. This is true not only for forests, but for many dynamical systems. To put it simply: forests that recover fast are more resilient. Forests that recover slowly may be in danger of permanent disappearance.

The specialized literature proposes different metrics for measuring the recovery speed. The performance of these metrics depends on many factors. Some of them are natural, such as the intensity of the perturbation or the seasonality. Others are technical, such as the sampling frequency or the spatial resolution.

Keywords
No keywords available
Programming language
  • R 100%
License
</>Source code

Participating organisations

Netherlands eScience Center

Mentions

Contributors

Contact person

Pablo Rodríguez-Sánchez

Pablo Rodríguez-Sánchez

Netherlands eScience Center
Mail Pablo
Pablo Rodríguez-Sánchez
Pablo Rodríguez-Sánchez
Netherlands eScience Center
WdK
Wanda de Keersmaecker
Wageningen University and Research

Related projects

RETURN - Monitoring tropical forest recovery capacity using RADAR Sentinel satellite data

Demonstrating the potential of European Sentinel satellite data

Updated 18 months ago
Finished