Retina COVID19

Real Time National Policy Adjustment and Evaluation on the Basis of a Computational Model for COVID19

Social distancing measures carry economic and social costs

The current COVID-19 pandemic presents an unprecedented challenge for policy makers. Although the major consequences from the uninhibited spread of COVID-19 virus in Western European countries have abated due to far reaching social distancing measures, these measures carry enormous economic and social costs. Furthermore, basic epidemiological mechanics dictate that some form of containment policy will be necessary for the foreseeable future in order to prevent a recurrent outbreak and keep the impact of COVID-19 manageable. The challenge then is to design public policy interventions informed by epidemiological models. However, these models suffer from what has been termed in other fields the curse of locality: while the basic biology of the virus is the same everywhere, the outcomes will differ according to the local circumstances: the host population in each country is different, societal norms and customs vary and spatial patterns governing movement of people in their daily lives differ. This means that Dutch policy must be informed by a model that is tailored to circumstances in the Netherlands. In this project, work will continue on developing an epidemiological model that can be used to inform public health interventions and is specifically tailored to circumstances in the Netherlands.

Participating organisations

University Medical Center Utrecht
Utrecht University
Life Sciences
Life Sciences
Natural Sciences & Engineering
Natural Sciences & Engineering
Netherlands eScience Center

Team

MB
Martin Bootsma
JF
Jason Frank
Inti Pelupessy
Inti Pelupessy
Lead RSE
Netherlands eScience Center
Ben van Werkhoven
Ben van Werkhoven
Senior eScience Research Engineer
Netherlands eScience Center
Lourens Veen
eScience Research Engineer
Netherlands eScience Center
Rena Bakhshi
Programme Manager
Netherlands eScience Center
MB
Marc Bonten
MK
Mirjam Kretzschmar
Co-Applicant
University Medical Center Utrecht

Related projects

COVID-19 Grand Challenge

Assessing the suspicion and severity of COVID-19 in a CT scan

Updated 22 months ago
Finished

FAIR Data for CAPACITY

Statistical analyses and machine learning models: Insights about the relation between...

Updated 22 months ago
Finished

PuReGoMe

Understanding Dutch public sentiment during the COVID-19 outbreak period by analyzing real-time...

Updated 22 months ago
Finished

Related software

Kernel Tuner

KE

Kernel Tuner greatly simplifies the development of highly-optimized and auto-tuned CUDA, OpenCL, and C code, supporting many advanced use-cases and optimization strategies that speed up the auto-tuning process.

Updated 16 months ago
113 15